

Elemental Carbon

Strong diurnal variations due to local emissions – but cannot easily identify transport from Mexico City

Predicted CO 21 UTC, March 20

Multi-day variations more evident further downwind

Pacific Northwest

Transport & Aerosol Sources

- WRF (constrained meteorology) + Lagrangian Particle Disperison model
 - Anthropogenic and biomass burning sources tagged
 - Air mass meteorological "age" computed
- Used to determine favorable transport periods and aerosol sources

Specific Absorption at T1

- Consistent with expectation of rapid soot aging and coating
- Baumgardner et al. (2007) found α_{abs} varied little during day

samples provided by Alex Laskin

Specific Absorption during Transport

Coating Occurring Downwind?

Median α_{abs} m² g⁻¹

Transport Non-Transport
Periods Periods
-- 5.97 -- -- 5.41
-- 5.72 -- -- 5.61

Difference is only weakly statistically significant (few cases)

Discussion

- Do climate models adequately represent changes in α_{abs} downwind of anthropogenic sources?
- Longer sampling period needed to obtain more significant statistics
- Modeling, constrained by observed meteorology, useful to help identify periods of transport between surface sites and air mass age
- Modeling can also identify sources, but other data such as AMS organic spectra should also be used to identify periods dominated by biomass burning
- Over the past year, AMS organic spectra data has become available from multiple sites